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The Finite Difference Method for S-Parameter
Calculation of Arbitrary Three-Dimensional
Structures

Steffen Haffa, Member, IEEE, Detlev Hollmann, Member, IEEE, and Werner Wiesbeck, Senior Member, IEEE

Abstract—This paper describes the application of the finite-
difference method for the determination of scattering param-
eters of passive, arbitrary three-dimensional, lossy structures.
Maxwell’s equations are solved in the frequency domain by
solution of a boundary value problem. The generalized
S-parameters can be computed for any one port or two port
structure, while, for the first time, dielectric and conductor
losses are taken into account. Higher order mode coupling can
be considered and different geometries are allowed at the input
and output ports. Verification calculations are given and re-
sults are presented for typical structures.

I. INTRODUCTION

N efficient design of monolithic integrated millime-

ter-wave circuits requires an exact knowledge of the
electrical behavior of discontinuities and intersections.
With increasing frequencies losses of the substrate and the
metallization become more and more important and have
to be considered. Therefore a powerful field theoretical
method has to be applied instead of a time consuming trial
and error procedure.

Several numerical methods have been presented in the
literature but most of them are restricted to special ge-
ometries or they are not applicable due to lack of gener-
ality [1]-[8]. The spectral-domain approach is used in a
wide field for computation of propagation characteristics
of coupled lines [2]. However, it can only be applied to
planar structures and losses are introduced by a pertur-
bational calculation. Other procedures like the method of
moments [3] require the knowledge of special functions
as the Green’s function, and are therefore mainly re-
stricted to planar or symmetrical structures. A very flex-
ible formulation is the finite-element method [4]-[6]. By
using a triangular mesh a wide variety of geometries can
be approximated, but the mesh generation is a major task.
Suppression of spurious modes is another challenge which
has to be accounted for.

A discretization of the differential Maxwell’s equations
in space and time is applied by the finite-difference time-
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domain method [9]-[14]. It has been used to perform time-
domain simulations of pulse propagation in waveguide
structures and microstrip circuits. Frequency-dependent
scattering parameters can be calculated by Fourier trans-
form of the time-domain results. Due to the fixed time
step At the mesh has to be uniform. To accurately model
sharp discontinuities a very small mesh size has to be em-
ployed, which leads to a very extensive computational ef-
fort.

The use of time-domain methods in the investigation of
resonant structures requires small time steps to reach a
sufficient resolution in the frequency domain. Because of
the broad-band calculation any dispersive behavior of the
material involved cannot be accounted for. The fre-
quency-domain methods overcome these disadvantages by
avoiding the Fourier transform and give the frequency de-
pendent scattering parameters directly.

The finite-difference frequency-domain method has
been successfully applied to eigenvalue problems for cal-
culating the propagation characteristics of arbitrarily filled
waveguides and resonant frequencies of cavity resonators
[15], [16]. In our approach we present a more generalized
version of a procedure, which has been introduced by
Christ and Hartnagel [17], [18] to model MMIC chip in-
terconnections.

After a description of the general formulation, includ-
ing the discretization and the derivation of the scattering
parameters, verifications are given for the numerical pro-
cedure. Example structures show the capabilities of the
method and demonstrate the applicability to practical
problems.

II. CoMPUTATIONAL METHOD

The structure under consideration is enclosed in a
shielded rectangular box (Fig. 1). The whole box is di-
vided into n elementary cells filled with arbitrary mate-
rials. Using this grid the three field components of the
electric and magnetic fields are defined on every cell,
which are used for discretization of Maxwell’s equations.
This leads to a relation between the field components of
the neighboring cells. The combination of these relations
give a linear system of equations. Its solution represents
the complete electric field inside the whole structure. The
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back side
(port B)

front side {port A)

Fig. 1. Typical grid for a three-dimensional structure for discretization of
Maxwell’s equations and the coordinate system.

derivation of the equations is described in detail in Sec-
tion II-A. '

The walls of the box are perfectly conducting except
for the two planes at the front and back sides. For
S-parameter calculation the front and back sides of the
structure are assumed to be connected to infinitely long
transmission lines. The modal fields are given by the so-
lution of the associated two dimensional eigenvalue prob-
lem on each port. In Section II-B the 2-D-problem is
solved by the finite difference method for structures ho-
mogeneous in the direction of propagation.

Section II-C describes the procedure of S-parameter
evaluation from the results of the three-dimensional field
computations.

A. Discretization of the Field Equations

The grid used for discretization has been chosen to be
nonequidistant Cartesian (Fig. 1) to simplify the mesh
generation-and to provide a sparse diagonal matrix of the
resulting system of equations. The three space coordi-
nates of the electrical field are defined upon an elementary
cell of the grid. The actual cell is marked by the index k
and has the dimensions x;, y;, and z; as shown in Fig.
2(a). It consists of a material having a scalar complex per-
mittivity and permeability. The electric field components
E, (Fig. 2(b)) are located on the middle of the edges and
are assumed to be constant along the edge. Similarly a
second grid is defined for the magnetic flux density B;.
Both grids are combined by placing the components of B,
at the center of each face of the E-mesh. This kind of
allocation has the advantage that Maxwell’s equations are
always satisfied, even with different materials, because
transition from one cell to the next involves continuous
parallel E-field and perpendicular B-field components.

In the following £ and H are the electric and magnetic
field strengths, D and B the flux densities and j; the source
current density. All field components and material related
parameters are allowed to be complex. With a harmonic
time dependence of the form exp (jwt), Maxwell’s equa-
tions .in integral form can be written:

c&ﬁwd@’:
C

S (ij + «kE) - dA
4

+ S 7 - di (1a)
A

Eyk

(@) ()

Fig. 2. Elementary cell k. (a) Dimensions and material. (b) Allocation of
the electric and magnetic field components.

§E-d§=—gjw§-dz (1b)
c 4
<§> (jwD + kE) - dAd =0 (1c)
A
@ B-di=0 (1d)
4
with the relations
D = ¢E (le)
B =puH (1f)
where
w angular frequency
K conductivity

complex permittivity
complex permeability.

€ = €' — je")

p= polp’ — jpu")

In this paper a source free structure is assumed (._I; =
0). Dielectric losses (tan 8) have been taken into account
by the complex permittivity €. The finite conductivity « is
included in the frequency dependent imaginary part of the
permittivity—see (2). This leads to a new complex di-
electric constant e* = ¢, * ¢. In the following the com-
plex material parameter ¢, of the cell £ will be used. The
values ¢, are complex in general, but real for lossless
structures:

= % = ¢

= eo{e' - j<e’ tan & + 120 70 ﬁﬂ
ko

ko = w * vVegup wave number. 2)

Maxwell’s first and second equation, (la) and (1b), re-
spectively, can be discretized for every cell by a lowest-
order integration formula. The integration planes for the
elementary cell k are shaded in Fig. 2(b). Along the in- -
tegration path field components of the neighboring cells
are required. According to Fig. 3 indices are assigned to
these cells in the following way: the actual cell is named
k and the neighboring cells in y-direction are named / and
r (left, right), whereas the cells in x-direction are marked
by u and a (under, above). The letters fand b are used for
the cells located in the planes in front ( f) and behind (b)
the actual plane. Combinations of these are used to mark
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Fig. 3. Indexing scheme for the neighboring cells.

further surrounding cells. Equation (1b) leads to (see Fig.
4(b))
xEcp — wEua — %Evx + 2B = —jozx B, . ()

Similarly, (1a) can be written as (4) according to Fig.
4(a); noticing that the integration plane is divided into
four rectangles which may consist of different materials
(cells k, I, f and f1). For simplification some abbrevia-
tions, introduced in (5), define an equivalent length s, and
an equivalent area Fj;:

Sz,kHz,k - sy,kHy,k - sz,le,l + sy,ny,f
Jweg
=" Fx,k : Ex,k (4)
1 fz %
Spiy = —\—+— B (5a)
2p0 \ By
Fy = yezer + Vizier + Yizpe + NiZrep. (5b)

Two similar equations can be deduced for the y and z
components of the FE-field. Setting up (3) for all
B-components, which are involved in (4), and combining
them allows elimination of the B-fields. This leads to (6)
for the x-component of the electrical field E,

) ) s s
z,k z.k .k v.k
- Ey,a - Ex,r - Ey,k - Ex,b
Xk k Xk Zk
Sy k Sy k Sz,1 Sz.1
+2XF,->E,->E ,+—E
z,a z,k y,al v, !
Xk Xk Xy X
82,1 Sy.f Sy.f Sy.f
- T By T _Ez,af - Ex.f + = Ez,f
Vi Xf Zf xf

S s S S
+ _Z_’k+Lk+il+_l’I_k%.Fx’k
Ve Zk Yi %

: Ex,k =0 A (6)

Fig. 5 shows the 12 field components, which define the
E-field component in x-direction of cell k. Similar equa-
tions can be set up for the E, , and E, ;, components. Up
-to now equations have been derived which define a rela-
tion between the E-field of cell k£ and the neighboring cells.
Doing this for all #n cells of the whole structure results in
a linear system of equations which is written as

[C1E = E,. (7

The matrix [C] contains the geometry and the material
_parameters of the three-dimensional problem (the factors
in (6)). E, in (7), represents the exciting fields at the input

(a) (b

Fig. 4. Integration planes for discretization of first and second of Max-
wells’ equation. (a) Equation (1a). (b) Equation (1b).

‘} Exr

Fig. 5. E components, which correspond to the E, , component in the three-
dimensional case.

and output ports (front and back side in Fig. 1). If they
are set zero (electric wall) an eigenvalue problem is de-
fined. For S-parameter evaluation however, the front and
back side, called port A and B of the structure, are con-
nected to two transmission lines of infinite lengths. The
electric fields at those ports have to be the eigenvectors
of the resulting 2-D structure. Their computation is de-
scribed in the next section.

In the case of a lossless structure it can be shown that
the resulting system of equations reduces to a real one.
Equation (7) contains the E,, E, and the E, components
for all n nodes, thus the matrix is of order 3n - 3n. Due
to the rectangular grid, the matrix [C] is sparse with only
25 diagonals.

If losses are incorporated or if wave propagation along
the structure is simulated to study interactions of discon-

- tinuities, all field components will be complex. The com-

plex system of equations (7) must be changed to a real
system, because the most efficient numerical equation sol-
vers only deal with real matrices (i.c., [22]). To take ad-
vantage of this, (7) is splitted in its real (RE) and imag-
inary (IM) part. This leads to a 6n by 6n matrix, which is
real. Equation (8) shows the six rows of the system for |
one node. \ \

. RS " RE RE
. . . ‘. Ex,k Exr,k
oot ™M M
‘. ’. Ex,k Exr,k
o E;‘ﬁ( E;{fk .
. ‘. . EM o EM F (8)
. . . . v,k yr.k
oo .. ‘. RE RE
.o, . * Ez,k Ezr,k
‘. . M M
‘. ‘. Ez,k Ezr,k
C
- —




HAFFA et al.: FINITE DIFFERENCE METHOD FOR S$-PARAMETER CALCULATION 1605

If the node is at the interface ports 4 or B, the right side
is not zero and contains the exciting field. The number of
diagonals increases from 25 in the lossless case to 27 for
dielectric and conductor losses, and to 57 for dielectric,
magnetic and conductor losses.

The solution of the resulting system of equations is per-
formed on a supercomputer, which allows to deal with up
to 55 000 elementary cells. A routine, based on the bi-
conjugate-gradient method is applied, which takes advan-
tage of the numerical form of the matrix [22], [23]. After
the solution is computed, the electric field in every cell is
available, not only for S-parameter calculation, but also
to give insight into the electrical behavior and interactions
of the structure. This can be demonstrated by three-di-
mensional graphical representation of the distribution of
H-field and power flux density.

B. Two-Dimensional Analysis of the Field at the Ports

As previously mentioned, the structure under investi-
gation is connected to infinitely long transmission lines at
both ports, which are homogeneous in z direction. Thus
the problem of determining the field distribution of the
propagation modes reduces to a two-dimensional one.

The discretization procedure for Maxwell’s equations
is the same as in the three-dimensional case, but it sim-
plifies because the dependency of the field components in
z-direction is known. The fields at the plane in front ()
and behind (b) (Fig. 3) at a distance of Az are related to
the fields of the actual plane k by the propagation constant
k, of the considered mode:

_ +rk Az, — +jk: Az,
Ex,f - Ex,ke s Ey,f - Ey_ke ’

E,;= E e (9a)
E., = E e E,, = E, e
E,, = E e (9b)

To eliminate the z-components of the electric field the
discrete form of the continuity equation (lc) is applied.
The values F, are defined according to (5b):

Fx,uEx,u
+ Fz.sz.f - Fz,kEz,k = 0

- Fx.kEx.k + Fy,lE_vJ - Fy,kEy,k

If (6) and (10) are combined, and the field components
of the plane in front (E, s, E, s, E, ;) and behind (E, ,,
E, ;, E, ;) are expressed (9), an equation for the E, , com-
ponent at node k results. Thus, after some calculations an
equation can be derived in terms of only E, and E, in one
plane of the longitudinal homogeneous structure:

AEy o + Ao By, + Ap3Ey o + Ay 4By g
+ AgsEq + AceEy + A rEc o + AusE:,
+ (Ao — (€752 + g2y E = 0. (11)

Equation (11) is represented by Fig. 6. A similar rela-
tion can be deduced for the E-field in the y-direction E, ,.

10)

Ex.i ) ‘b Ex.r

Fig. 6. E, , and related E components for the two-dimensional solution
with z homogeneity implied.

The coefficients A, ; are complex for any kind of losses in
the structure. Setting up these equations for the x- and
y-components of the electric field leads to an eigenvalue
problem of the form

41 -y -UD-E=0

[1]: unity matrix (12)

that is to be solved for y. The eigenvalues vy are related
to the complex propagation constant k, by

—~m{X+1- I<1+2>
Az

ke = 2 2\2

(13)

For an efficient computation only nonzero elements are
included in the system, so the size of the matrix [A] is
2m, where m is the number of nonideal conducting cells
in the z-plane.

A further drastical reduction of computation time can
be achieved if the structure is symmetrical with respect to
the x-z-plane, which is true in most practical cases. Then
an electric or a magnetic wall can be defined in the middle
of the structure. For the electric wall the Dirichlet bound-
ary condition can be applied, that is, the tangential com-
ponents E, of the electric field must vanish at the wall.
For the magnetic wall, the magnetic field is subject to the
Neumann boundary condition, which can be rewritten as
a condition for the electric field components perpendicu-
lar to the wall. Both conditions can be applied to (11) by
eliminating the coefficients 4, , of the cells beyond the
wall. The resulting matrix is reduced to half the size of
the original matrix.

To get all numerical modes, the number of which is as
high as the dimension of the matrix [4], the calculations
with the electric and the magnetic wall are combined. Us-
ing a magnetic wall for a first computation and an electric
for the second, all available modes are computed for the
whole grid structure. The results are merged to give the
same result as after a computation without walls but with
reduced computation time due to the smaller size of the
matrix (half that of the computation without walls).

After the propagation constants have been computed for
the desired modes, the transverse electric field (eigenvec-
tor) can be calculated for each mode as the solution of the
homogeneous linear system of equations (12). This leads
to m orthogonal eigenvectors. For normalization the or-
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thogonality relation (14) is applied for each mode (i = k).
The integration is performed across the two-dimensional
structure. The E fields are normalized, so that the ¢; are
real and equal to one. Additionally the orthogonality re-
lation between different modes is tested to prove the ac-
curacy of the field computation:

SA (Eq X Hy) dA = ¢ - 8. (14)

For verification several two-dimensional structures have
been investigated and the results have been checked
against available analytical solutions. The results of a
rectangular waveguide of height = 5a¢ and width = 10a,
filled with lossy dielectric material are given in Table 1.
The propagation constant indicates a smooth transition at
the cutoff between the normalized frequencies ak, = 0.2
and 0.3 due to the losses. The numerical result of the
propagation constant is compared with the exact solution
[19] and the resulting error is given in the last column.
The table shows an error in real and imaginary part of less
than 0.3% over the whole frequency range. The error in-
creases near the cutoff due to the difference in the cutoff
frequency of the physical mode and the grid mode. Com-
parable solutions [6], [20], obtained by the finite element
method, show similar accuracy.

A field plot of the transverse modal field of the TM,,
mode of the same waveguide is shown in Fig. 7. The elec-
tric and magnetic field lines show excellent agreement
with [21], even for this mode of order seven. The tics on
each side on the graph indicate the division of the mesh
used for computation.

C. Determination of the Scattering Matrix

The method for evaluation of the scattering matrix is
described extensively in [17], but for reason of complete-
ness the main steps are presented in the following.

The ports at the three-dimensional structure under con-
sideration are assumed to be connected to infinitely long
transmission lines, whose modal fields have been com-
puted by the 2-D eigenvalue problem as described above.
Using these modal fields a generalized scattering matrix
can be defined from the ratios of the emergent modes (b;)
and the incident modes (g;) at both ports. Thus the scat-
tering parameters define a relation between the different
modes at each port and the transition behavior between
both ports. The order of the matrix is (k + [), where k is
the number of modes at port A and / the number of modes
at port B.

To compute the scattering matrix a linear superposition
of the modal fields is applied at port A and B and the re-
sulting electric field inside the structure is calculated. In
every z-plane the _Eangential field Et (z) can be splitted into
the modal fields E,;, FI,,- for mode i, using the orthogonal-
ity relation (15). Thus the contribution of the applied
transverse electric field can be calculated at all z-planes
inside the structure. It is now possible to determine the
magnitude and phase of the two waves a;(z) and b, (z) for
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TABLE I
PROPAGATION CONSTANTS OF A LosSY WAVEGUIDE (¢, = 1.5, tan 6 = 0.1)
FOR THE TE;; MODE VERSUS FREQUENCY AND DEVIATION FROM THE
ExAcT SOLUTION

Frequency Relative Propagation Error Compared to
ak, Constant Exact Solution [19]
k k
- Im{ = AR A Im
el omlp)  em
0.1 0.0260 —2.8896 0.08% -0.12%
0.2 0.0762 —0.9839 0.25% -0.25%
0.3 0.6473 -0.1159 0.29% —-0.26%
0.4 0.9438 -0.0795 0.07% 0.07%
0.5 1.0541 —0.0795 0.04% —0.03%
0.6 1.1095 -0.0676 0.02% 0.02%

Fig. 7. E and H-field line plot of the TM,;-mode of a rectangular wave-
guide.

each mode i, propagating in +z and —z-direction, by
comparison of the values of the modal decomposition
w;(2) at two neighboring z-planes:

SA E@ x Hy) dAd = w,@) = 4@ + b@. (15)

Since the propagation characteristics of the mode am-
plitudes a;(z) and b;(z) are known at the input and the
output ports, the reflection coefficients can be computed
for the given field excitation. By combining a sufficient
number (k + /) of linear independent field excitations fi-
nally the generalized scattering parameters can be derived
from the calculated reflection coefficients.

Higher order modes, excited at z-discontinuities, which
are not considered at the ports, are treated to be ideally
reflected at the connecting ports and may again interact
with the propagating modes at the discontinuity. To avoid
this, neglected modes must be-attenuated sufficiently when
they reach the input and output ports. Otherwise they have
to be taken into account by including them into the modal
superposition. Including more modes allows a shorter dis-
tance between the discontinuity and the input and output
ports, thus the resulting matrix gets smaller. On the other
hand the number of field excitations and the number of
field computations depend on the number of considered
modes. Therefore, to get small calculation times a trade-
off has to be found.

The accuracy of the scattering matrix elements can be
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determined for any homogeneous transrission line. The
reflection coefficients S;; and S,, have ideally to be zero.
The parameters S,; and §;, can be compared to the trans-
mission coefficients, derived from the propagation con-
stant of the two-dimensional solution [24]. As an example
a high loss microstrip transmission line of length 20a
(tané = 0.5, k = 0.05 Sm/ mm?) was investigated in the
frequency range from ak, = 0.02 to ak, = 0.2. The cal-
culated error of S;, and S, is less 0.1 degree in phase and
less 0.1% in magnitude. The reflection loss is better —60
dB. The errors of lossy structures agree very well to the
estimations given in [18] for the lossless case.

III. ExAMPLES AND RESULTS

The following examples show the features of the
method. They have been chosen to provide a comparison
of these results to other methods e.g., achieved from two-
dimensional formulations.

A microstrip line of 43 pm width with a metallization
thickness of 3 um, located on a 100 um GaAs substrate,
has been investigated. The electric field line plot (Fig. 8)
shows the field concentrated beneath the conductor. Also
some field lines end on the top of the microstrip line. A
more impressive view can be given by the three-dimen-
sional picture of the power flux density in z-direction (Fig.
9). The flux density S, ,,(x, y) in z-direction in the plane
Z = zq has been calculated according (16) and is normal-
ized to the power P, ., divided by the area A of the cross-
sectional plane z = z;. This picture shows clearly the con-
centration of the power around the conductor of the mi-
crostrip line. The two peaks are located at the edges of
the conductor. It can be seen that the microstrip mode is
not disturbed by the enclosure:

: 1 ( . L

P,z =5 Re { SA E &, ») x Hie. ) dA}
(16a)
2 Re {E,H} H} 16b
Sz,zo(x’ y) = '2P Re {ExHy - Ey x } ( )

2,20

The scattering parameters of the three-dimensional cal-
culation are related to the modal fields at both sides. How-
ever for CAD applications the characteristic impedance
Z, at the ports is required. Although the characteristic
impedance is only defined for TEM modes, an equivalent
value can be defined for quasi-TEM modes by using one
of the following formulas:

. : b
ZPU) _ ,LJQE U.= \ E ds (17a)
L= 2P;l< ’ R Pl
2P = | ‘
Z;UI) _ W (170
Z
Z(Lee/f) = 20 (17d)

V €eff '
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Fig. 8. Electric field distribution of a 43 um microstrip line (metallization
thickness = 3 um) on 100 um GaAs substrate (¢, = 12.9).

power flux density

Fig. 9. Normalized power flux density on a microstrip in direction of prop-
agation—same dimensions as in Fig. 9.

The line integral (17a) for the power voltage (PU) def-
inition has to be performed from the inner conductor to
the outer conductor, whereas the integration path of the
loop integral (17b) (power current definition (PI)) has to
enclose the microstrip line. The voltage current definition
is either given by a direct calculation or by application of
(17¢). To apply definition (17d) the fields and propagation
constants must be computed the same structure, but with
all dielectrics replaced by air. This leads to the character-
istic impedance in air Z;,. In this case all three give
the same result for Z;,. For.non-TEM modes the result
depends on the integration path. Fig. 10 shows the cal-
culated results for a microstrip transmission line versus
frequency for the different definitions. For higher fre-
quencies the values diverge due to the increasing concen-
tration of the field under the microstrip, that means, the
propagating mode loses its TEM behavior more and more.
The results have been compared to a calculation using the .
spectral domain technique [2]. At low frequencies the val-
ues deviate by 5%. This correlates to a difference of 2.4 %
in the calculated voltage and. current (17a), (17b). Our
structure has a finite conductor thickness of 3 um where
the approach of [2] assumes a zero thickness. The same
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Fig. 10. Characteristic impedance Z; of a microstrip (w = 30 um, ¢ = 3
wm, substrate: & = 200 pm, €, = 12.9) for various definitons.
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Fig. 11. Arrow field plot of a high lossy rectangular coaxial waveguide
(inner conductor: 2a X 2a, width of outer conductor: 3.2a, x = 0.4 S -
m/mm?). (a) ak, = 0.01. (b) ak, = 0.3.

structure computed with conductor losses leads to a slight
diminution of the real part of the impedances and to a
negative imaginary part with an exponential decrease in
magnitude versus frequency.

Conductor losses are included in the calculation by giv-
ing the conductors a finite value of k. This may be dem-
onstrated using a rectangular coaxial waveguide, with the
inner conductor having a conductivity « = 0.4 S
m/ mm®. At lower frequencies the H-field penetrates the
lossy conductor, but at higher frequencies the conductor
is free of field and the field concentrates in the surround-
ing region (Fig. 11).

A 43 um microstrip line on GaAs substrate with a 50
um gap is used to demonstrate the field distribution around
the gap at about 50 GHz. The S-parameters demonstrate
the behavior of the gap liké a concentrated capacitor. A
time dependent plot of the electric field is given in Fig.
12 in the intervals of 1/12 of the time period T = 1 /f.
The conditions for the electric field at the input and output
ports have been chosen ideally matching. This has been
achieved by a complex three-dimensional calculation with
use of the previously computed scattering parameters.
Thus a continuous wave propagation is ensured. A stand-

ing wave behavior in the region between the input port

and the gap can be observed due to the reflections at the
gap. The concentration of the field in the gap region can
be studied.

A planar resistor of 50 (2 in series to a transmission line
has been realized by a volume of resistive material. The

IRNREINIE SRR R

T o

1=
IO LI L T | -2t
T 1 TOIES It L L] tosme
(TF IO it t=aT2
T ST I I T | esme
TSI ww

Fig. 12. Time dependence of the electric field beneath a microstrip line
(conductor: width 43 pm, thickness 20 pm, substrate: height 100 pm, e,
= 12.9) with a 50 um gap.
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Fig. 13. Magnitude S, of a planar series resistor at different conductivities
« (length 40 pm, width 43 pm, thickness 3 pgm) in microstrip of same cross-
section. Substrate: 2 = 150 ym, ¢, = 12.9.

magnitude of S;, (Fig. 13) shows a lumped element be-
havior over the whole frequency range. The structure can
be represented by a series resistor, parallel to a capacitor.
S, increases with increasing frequency due to the capac-
itive coupling. The data in Fig. 13 are plotted after a shift
of the reference plane to the ends of the resistor. The re-
sulting values are in close agreement to a calculation of
the dc values of the volume resistor (deviation <1% at
10 GHz).

An inductive post in a rectangular waveguide shows the
validity of the method even for inhomogeneous three-
dimensional structures. The wave incident upon the post
is the dominant TE;, waveguide mode. The calculated
scattering parameters are shown in Fig. 14 together with
the results from Leviatan and Sheaffer [25]. Their solu-
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Fig. 14. Reflection coefficient magnitude §,, versus ¢, for a centered di-
electric post in a rectangular waveguide (b/a = 0.5, d/a = 0.1, a =
A/1.4). The markers give the results from [25].

tion is based on a moment method, which uses filamen-
tary currents to simulate the scattered field and the field
inside the post. The agreement is very good even for high
dielectric values of the post. The small shift of the reso-
nance frequency is due to the slightly different post di-
ameter resulting from the discretization.

VI. CoNcLUSION

The presented method performs excellent results in
S-parameter computation of discontinuity problems in
planar transmission lines and even arbitrary three-dimen-
sional structures. The finite-different method was formu-
lated for analysis of three-dimensional lossy structures.
The boundary conditions were chosen with precomputed
electrical fields at the input and output port of the struc-
ture. Different excitations allow the evaluation of
S-parameters of different modes, including coupling be-
tween higher order modes. The method was discussed in
detail including the computation of the excited modal
fields.

Numerical examples were given for various lossy and
non lossy structures. Plots of the computed three-dimen-
sional electric and magnetic fields provide informations
on the behavior of the discontinuity. This will be of great
use in the case of resonant or coupling structures, e.g.,
dielectric resonators coupled to a microstrip line. The use
of a frequency-domain method allows the compution of
scattering parameters with any necessary frequency res-
olution. Higher order modes excited by a discontinuity
can be computed and the generalized S-parameters are
used to describe the mode coupling. The achieved results
are valid over a wide frequency range. The use of a su-
percomputer allows to treat large structures up to 55 000
elementary cells. The computing time depends on the
structure and is up to a few minutes for each frequency
point. The flexibility of this approach opens a wide vari-
ety of applications, i.e., monolithic microwave integrated
circuits, waveguide transitions, electromagnetlc compati-
bility, fields in biological media or similar structures.
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