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Abstract—This paper describes the application of the finite-

difference method for the determination of scattering param-

eters of passive, arbitrary three-dimensional, Iossy structures.

Maxwell’s equations are solved in the frequency domain by

solution of a boundary value problem. The generalized
S-parameters can be computed for any one port or two port
structure, while, for the first time, dielectric and conductor
losses are taken into account. Higher order mode coupling can

be considered and different geometries are allowed at the input
and output ports. Verification calculations are given and re-

sults are presented for typical structures.

I. INTRODUCTION

A N efficient design of monolithic integrated millime-

ter-wave circuits requires an exact knowledge of the

electrical behavior of discontinuities and intersections.

With increasing frequencies losses of the substrate and the

metallization become more and more important and have

to be considered. Therefore a powerful field theoretical

method has to be applied instead of a time consuming trial

and error procedure.

Several numerical methods have been presented in the

literature but most of them are restricted to special ge-

ometries or they are not applicable due to lack of gener-

ality [1] –[8]. The spectral-domain approach is used in a

wide field for computation of propagation characteristics

of coupled lines [2]. However, it can only be applied to

planar structures and losses are introduced by a pertur-

bational calculation. Other procedures like the method of

moments [3] require the knowledge of special functions

as the Green’s function, and are therefore mainly re-

stricted to planar or symmetrical structures. A very flex-

ible formulation is the finite-element method [4]-[6]. By

using a triangular mesh a wide variety of geometries can

be approximated, but the mesh generation is a major task.

Suppression of spurious modes is another challenge which
has to be accounted for.

A discretization of the differential Maxwell’s equations

in space and time is applied by the finite-difference time-
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domain method [9]-[14]. It has been used to perform time-

domain simulations of pulse propagation in waveguide

structures and microstrip circuits. Frequency-dependent

scattering parameters can be calculated by Fourier trans-

form of the time-domain results. Due to the fixed time

step At the mesh has to be uniform. To accurately model

sharp discontinuities a very small mesh size has to be em-

ployed, which leads to a very extensive computational ef-

fort.

The use of time-domain methods in the investigation of

resonant structures requires small time steps to reach a

sufficient resolution in the frequency domain. Because of

the broad-band calculation any dispersive behavior of the

material involved cannot be accounted for. The fre-

quency-domain methods overcome these disadvantages by

avoiding the Fourier transform and give the frequency de-

pendent scattering parameters directly.

The finite-difference frequency-domain method has

been successfully applied to eigenvalue problems for cal-

culating the propagation characteristics of arbitrarily filled

waveguides and resonant frequencies of cavity resonators

[15], [16]. In our approach we present a more generalized

version of a procedure, which has been introduced by

Christ and Hartnagel [17], [18] to model MMIC chip in-

terconnections.

After a description of the general formulation, includ-

ing the discretization and the derivation of the scattering

parameters, verifications are given for the numerical pro-

cedure. Example structures show the capabilities of the

method and demonstrate the applicability to practical

problems.

II. COMPUTATIONAL METHOD

The structure under consideraticm is enclosed in a
shielded rectangular box (Fig. 1). The whole box is di-

vided into n elementa~ cells filled with arbitrary mate-

rials. Using this grid the three field components of the

electric and magnetic fields are defined on every cell,

which are used for discretization of Maxwell’s equations.

This leads to a relation between the field components of

the neighboring cells. The combination of these relations

give a linear system of equations. Its solution represents

the complete electric field inside the whole structure. The
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front side (port A)

Fig. 1. Typical gfidfor athree-dimensional stmcture fortiiscretizationof
Maxwell’s equations and the coordinate system.

derivation of the equations is described in detail in Sec-

tion II-A.

The walls of the box are perfectly conducting except

for the two planes at the front and back sides. For

S-parameter calculation the front and back sides of the

structure are assumed to be connected to infinitely long

transmission lines. The modal fields are given by the so-

lution of the associated two dimensional eigenvalue prob-

lem on each port. In Section II-B the 2-D-problem is

solved by the finite difference method. for structures ho-

mogeneous in the direction of propagation.

Section II-C describes the procedure of S-parameter
evaluation from the results of the three-dimensional field

computations.

A. Discretization of the Field Equations

The grid used for discretization has been chosen to be

nonequidistant Cartesian (Fig. 1) to simplify the mesh

generation and to provide a sparse diagonal matrix of the

resulting system of equations. The three space coordi-

nates of the electrical field are defined upon an elementary

cell of the grid. The actual cell is marked by the index k

and has the dimensions xk, yk, and zi as shown in Fig.

2(a). It consists of a material having a scalar complex per-

mittivity and permeability. The electric field components

E~ (Fig. 2(b)) are located on the middlle of the edges and

are assumed to be constant along the edge. Similarly a

second grid is defined for the magnetic flux density Bk.
Both grids are combined by placing the components of Bk

at the center of each face of the E-mesh. This kind of

allocation has the advantage that Maxwell’s equations are

always satisfied, even with different materials, because

transition from one cell to the next involves continuous

parallel E-field and ~erpen~icular B-field components.

In the follow~g E ~nd H are the electric a~d magnetic

field strengths, D and B the flux densities and ~ the source

current density. All field components and material related

parameters are allowed to be complex. With a harmonic

time dependence of the form exp (jat)l,Maxwell’s equa-

tions in integral form can be written:

(la)

(a) (b)

Fig. 2. Elementary cell k. (a) Dimensions and material. (b) Allocation of
the electric and magnetic field components.

(lb)

(lC)

with the relations

where

(d angular frequency

K conductivity

E = 60(6” -- jE”) complex permittivity

P = WO(I.L’– .jp”) complex permeability.

In this paper a source’ free structure is assumed (~e =

O). Dielectric losses (tan 8) have been taken into account

by the complex permittivity 6. The finite conductivity K is

included in the frequency dependent imaginary part of the

permittivity--see (2). This leads to a new complex di-

electric constant e* = 60 “ ~k. In the following the com-

plex material parameter ~k of the cell k will be used. The

values tk are complex in general, but real for lossless

structures:

k. == a) . & wave number. (2)

Maxwell’s first and second equation, (la) and (lb), re-

spectively, can be discretized for every cell by a lowest-

order integration formula. The integration planes for the

elementary cell k are shaded in Fig. 2(b). Along the in-

tegration path field components of the neighboring cells

are required. According to Fig. 3 indices are assigned to

these cells in the following way: the actual cell is named
k and the neighboring cells in y-direction are named 1 and

r (left, right),, whereas the cells in x-direction are marked

by u and a (tunder, above). The letters ~and b are used for

the cells located in the planes in front (f) and behind (b)

the actual plane. Combinations of these are used to mark
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Fig. 3. Indexing scheme for the neighboring cells.

further surrounding cells. Equation (lb) leads to (see Fig.

4(b))

xkEX,b – ZkE2, a — XkEx, k + ZkEz, k = ‘jGJZ/#@y, k . (3)

Similarly, (la) can be written as (4) according to Fig.

4(a); noticing that the integration plane is divided into

four rectangles which may consist of different materials

(cells k, 1, f and ~i). For simplification some abbrevia-

tions, introduced in (5), define an equivalent length sk and

an equivalent area Fk:

sz, kHz, k — sy, kHy, k – ‘z, lHZ, 1 + %’,f ‘y.f

(4)

(5a)

Fx, k = ykzk~k + y&~~ + Y[ij6f/ + ykzf~f. (Sb)

Two similar equations can be deduced for the y and z

components of the E-field. Setting up (3) for all

B-components, which are involved in (4), and combining

them allows elimination of the B-fields. This leads to (6)

for the x-component of the electrical field E., k:

Sz k
-Ey,. – ‘Ex,r – ‘k Ey,k – ‘i Ex,b
Xk Yk Xk Zk

+ % EZ,. – 5kEz, k – ~EY,al + ~EY.l
Xk Xk

Sz1

– 2E.,1 – ‘f Ez,czf–~Ex,f +~Ez,f
Y1 Xf

(Szk
+ 2+%+% +%f–k; ”Fx, k

Yk Zk Y! Zf )

“ Ex,k = O ‘ (6)

Fig. 5 shows the 12 field components, which define the

E-field component in x-direction of cell k. Similar equa-

tions can be set up for the Ey, k and Ez, k components. Up

to now equations have been derived which define a rela-

tion between the E-field of cell k and the neighboring cells.

Doing this for all n cells of the whole structure results in

a linear system of equations which is written as

[C]E = E,. (7)

The matrix [C] contains the geometry and the material

paramet~rs of the three-dimensional problem (the factors

in (6)). E, in (7), represents the exciting fields at the input

(a) (b)

Fig. 4. Integration planes for discretization of first and second
wells’ equation. (a) Equation (1a). (b) Equation (1b).

of Max-

EY,a[ ~%tI

“’’-’”r
‘X”w ‘y,k

Fig. 5. E components, which correspond to the E., ~component in the three-
dimensional case.

and output ports (front and back side in Fig. 1). If they

are set zero (electric wall) an eigenvalue problem is de-

fined. For S-parameter evaluation however, the front and

back side, called port A and B of the structure, are con-

nected to two transmission lines of infinite lengths. The

electric fields at those ports have to be the eigenvectors

of the resulting 2-D structure. Their computation is de-

scribed in the next section.

In the case of a lossless structure it can be shown that

the resulting system of equations reduces to a real one.

Equation (7) contains the Ex, Ey and the Ez components

for all n nodes, thus the matrix is of order 3n “ 3n. Due

to the rectangular grid, the matrix [C] is sparse with only

25 diagonals.

If losses are incorporated or if wave propagation along

the structure is simulated to study interactions of discon-

tinuities, all field components will be complex. The com-

plex system of equations (7) must be changed to a real

system, because the most efficient numerical equation sol-

vers only deal with real matrices (i. e., [22]). To take ad-

vantage of this, (7) is splitted in its real (RE) and imag-

inary (IM) part. This leads to a 6n by 6n matrix, which is

real. Equation (8) shows the six rows of the system for

one node. \

c

—— (8)
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If the node is at the interface ports A or B, the right side

is not zero and contains the exciting fiend. The number of

diagonals increases from 25 in the lossless case to 27 for

dielectric and conductor losses, and to 57 for dielectric,

magnetic and conductor losses.

The solution of the resulting system of equations is per-

formed on a supercomputer, which allows to deal with up

to 55000 elementary cells. A routine, based on the bi-

conjugate-gradient method is applied, which takes advan-

tage of the numerical form of the matrix [22], [23]. After

the solution is computed, the electric field in every cell is

available, not only for S-parameter calculation, but also

to give insight into the electrical behavior and interactions

of the structure. This can be demonstrated by three-di-

mensional graphical representation of the distribution of

H-field and power flux density.

B. Two-Dimensional Analysis of the Field at the Ports

As previously mentioned, the structure under investi-

gation is connected to infinitely long transmission lines at

both ports, which are homogeneous in z direction. Thus

the problem of determining the field distribution of the

propagation modes reduces to a two-dimensional one.

The discretization procedure for Ma[xwell’s equations

is the same as in the three-dimensional case, but it sim-

plifies because the dependency of the field components in

z-direction is known. The fields at the plane in front (f)

and behind (b) (Fig. 3) at a distance of Az are related to

the fields of the actual plane k by the propagation constant

k, of the considered mode:

Ex,f = Ex, ke+]k:Az; Ey,f = Ey,ke+Jk’Az;

E,,f = E, ~ehjkzAz (9a)

Ex,b = Ex,ke-jkz&; Ey,b = Ey,ke-jk’&;

Ez,b = Ez,ke-jk:Az. (9b)

To eliminate the z-components of the electric field the

discrete form of the continuity equation (lc) is applied.

The values Fk are defined according to (5b):

F’Z,UEX,U– Fx,kEx,k + Fy,lEy,l ‘– Fy, /#y,k

+ Fz,fEz.f – F,,kEZ,k = O (lo)

If (6) and (10) are combined, and the field components

of the plane in front (.E.,f, EY,f, Ez,f ) and behind (EX,b,

Ey, b, Ez, b) are expressed (9), an equaticm for the EX:~ com-

ponent at node k results. Thus, after solme calculations an

equation can be derived in terms of only Ex and Ey in one

plane of the longitudinal homogeneous structure:

Ztk,@Y,a + &2 -%, r + Ak, 3 Ey,.k + ‘1k,4Ey,al

+ Ak,5Ex,[ + Ak,rjEY,[ + Ak,~~x,a + Ak,8E., u

+ (Ak,q – (e?
–jkz& + e~kzAz))j~x,k = O,

(11)

Equation (11) is represented by Fig. 6. A similar rela-

tion can be deduced for the E-field in the y-direction Ey, k.

o

Ex,l
F-&Exl

L.> 1

f

Ey,k
Ex,”

Fig. 6. EX,k and related E components for the two-dimensional solution
with z homogeneity implied.

The coefficients Ak, ~are complex for any kind of losses in

the structure. Setting up these equations for the x- and

y-components of the electric field leads to an eigenvalue

problem of the form

[Z]: unity matrix (12)

that is to be solved for T. The eigenvalues T are related

to the complex propagation constant kz by

kZ=---&ln(~+J~)~). (13)

For an efficient computation only nonzero elements are

included in the system, so the size of the matrix [A] is

2m, where m is the number of nonideal conducting cells

in the z-plane,

A further drastical reduction of computation time can

be achieved if the structure is symmetrical with respect to

the x-z-plane, which is true in most practical cases. Then

an electric or ii magnetic wall can be defined in the middle

of the structure. For the electric wall the Dirichlet bound-

ary condition can be applied, that is, the tangential com-

ponents Ef of the electric field must vanish at the wall.

For the magnetic wall, the magnetic field is subject to the

Neumann boundary condition, which can be rewritten as

a condition fcir the electric field components perpendicu-

lar to the wall. Both conditions can be applied to (11) by

eliminating the coefficients Ak,. of the cells beyond the

wall. The resulting matrix is reduced to half the size of

the original matrix.

To get all numerical modes, the number of which is as

high as the dimension of the matrix [A], the calculations

with the elect ric and the magnetic wall are combined. IJs-

ing a magnetic wall for a first computation and an electric

for the second, all available modes are computed for the

whole grid structure. The results are merged to give the

same result as after a computation without walls but with

reduced computation time due to the smaller size of the
matrix (half that of the computation without walls).

After the propagation constants have been computed for

the desired modes, the transverse electric field (eigenvec-

tor) can be calculated for each mode as the solution of the

homogeneous linear system of equations (12). This leads

to m orthogonal eigenvectors. For normalization the or-
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thogonality relation (14) is applied for each mode (i = k).

The integration is performed across the two-dimensional

structure. The E fields are normalized, so that the Cii are
real and equal to one. Additionally the orthogonality re-

lation between different modes is tested to prove the ac-

curacy of the field computation:

1(Etix ii,~)dzi= c~~ “ & . (14)
A

For verification several two-dimensional structures have

been investigated and the results have been checked

against available analytical solutions. The results of a

rectangular waveguide of height = 5a and width = 10a,

filled with lossy dielectric material are given in Table I.

The propagation constant indicates a smooth transition at

the cutoff between the normalized frequencies ako = 0.2

and 0.3 due to the losses. The numerical result of the

propagation constant is compared with the exact solution

[19] and the resulting error is given in the last column.

The table shows an error in real and imaginary part of less

than 0.3 % over the whole frequency range. The error in-

creases near the cutoff due to the difference in the cutoff

frequency of the physical mode and the grid mode. Com-

parable solutions [6], [20], obtained by the finite element

method, show similar accuracy.

A field plot of the transverse modal field of the TM21

mode of the same waveguide is shown in Fig. 7. The elec-

tric and magnetic field lines show excellent agreement

with [21], even for this mode of order seven. The tics on

each side on the graph indicate the division of the mesh

used for computation.

C. Determination of the Scattering Matrix

The method for evaluation of the scattering matrix is

described extensively in [17], but for reason of complete-

ness the main steps are presented in the following.

The ports at the three-dimensional structure under con-

sideration are assumed to be connected to infinitely long

transmission lines, whose modal fields have been com-

puted by the 2-D eigenvalue problem as described above.

Using these modal fields a generalized scattering matrix

can be defined from the ratios of the emergent modes (bi )

and the incident modes (ai ) at both ports. Thus the scat-

tering parameters define a relation between the different

modes at each port and the transition behavior between

both ports. The order of the matrix is (k + 1), where k is
the number of modes at port A and 1 the number of modes

at port B.
To compute the scattering matrix a linear superposition

of the modal fields is applied at port A and B and the re-

sulting electric field inside the structure is calculated. In

every z-plane the tangential field Et(z) can be splitted into

the modal fields ~ti, ~ti for mode i, using the orthogonal-

ity relation (15). Thus the contribution of the applied

transverse electric field can be calculated at all z-planes

inside the structure. It is now possible to determine the

magnitude and phase of the two waves ai (z) and bi (z) for

TABLE I
PROPAGATION CONSTANTS OF A LossY WAVEGUIDE (e, = 1.5, tan 8 = O.1)

FORTHETEIO MODE VERSUSFREQUENCYAND DEVIATION FROM THE

EXACT SOLUTION

Frequency Relative Propagation Error Compared to
ako Constant Exact Solution [19]

“M ‘m[:] ‘R’ “m
0.1 0.0260 –2.8896 0.08% –0.12%

0.2 0.0762 –0.9839 0.25% –0.25%

0.3 0.6473 –0.1159 0.29% –0.26%

0.4 0.9438 –0.0795 0.07% 0.07%

0.5 1.0541 –0.0795 0.04% –0.03%

0.6 1.1095 –0.0676 0.02% 0.02%

Fig. 7. E and H-field line plot of the TM2 ,-mode of a rectangular wave-
guide.

each mode i, propagating in + z and – z-direction, by

comparison of the values of the modal decomposition

~i (z) at two neighboring z-planes:

! (~~(Z) x ‘~i) d~ = ~i(Z) = a,(z) + bj(Z). (15)
A

Since the propagation characteristics of the mode am-

plitudes a~(z) and bi (z) are known at the input and the

output ports, the reflection coefficients can be computed

for the given field excitation. By combining a sufficient

number (k + 1) of linear independent field excitations fi-

nally the generalized scattering parameters can be derived

from the calculated reflection coefficients.

Higher order modes, excited at z-discontinuities, which

are not considered at the ports, are treated to be ideally

reflected at the connecting ports and may again interact

with the propagating modes at the discontinuity. To avoid

this, neglected modes must be attenuated sufficiently when

they reach the input and output ports. Otherwise they have

to be taken into account by including them into the modal

superposition. Including more modes allows a shorter dis-

tance between the discontinuity and the input and output

ports, thus the resulting matrix gets smaller. On the other

hand the number of field excitations and the number of

field computations depend on the number of considered

modes. Therefore, to get small calculation times a trade-

off has to be found.

The accuracy of the scattering matrix elements can be
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determined for any homogeneous transmission line. The

reflection coefficients SI ~ and S22 have ideally to be zero.

The parameters S21 and S12 can be compared to the trans-

mission coefficients, derived from the propagation con-

stant of the two-dimensional solution [241]. As an example

a high loss microstrip transmission line of length 20a

(tan~ = ().5, K = ().05 Sm/mm2) was investigated in the

frequency range from ako = 0.02 to ak{) = 0.2. The cal-

culated error of S12 and S21 is less 0.1 degree in phase and

less 0.1 % in magnitude. The reflection IIoss is better – 60

dB. The errors of lossy structures agree very well to the

estimations given in [18] for the lossless case.

III. EXAMPLES AND RESULTS

The following examples show the features of the

method. They have been chosen to provide a comparison

of these results to other methods e.g., achieved. from two-

dimensional formulations.

A microstrip line of 43 pm width with a metallization

thickness of 3 pm, located on a 100 pm GaAs substrate,

has been investigated. The electric field line pilot (Fig. 8)

shows the field concentrated beneath the conductor. Also

some field lines end on the top of the microstrip line. A

more impressive view can be given by the three-dimen-

sional picture of the power flux density in z-direction (Fig.

9). The flux density SZ,ZO(X,y) in z-direction in the plane

z = Z. has been calculated according (16) and is normal-

ized to the power PZ,~0divided by the area A of the cross-

sectional plane z = Zo. This picture shows clearly the con-

centration of the power around the conductor of the mi-

crostrip line. The two peaks are located at the edges of

the conductor. It can be seen that the microstrip mode is

not disturbed by the enclosure:

(16a)

Sz,zo(x, y) = & Re {EXH~ – EyHf}. (16b)
Z,zo

The scattering parameters of the three-dimensional cal-

culation are related to the modal fields at both sides. How-

ever for CAD applications the characteristic impedance

ZL at the ports is required. Although the characteristic

impedance is only defined for TEM modes, an equivalent

value can be defined for quasi-TEM modes by using one

of the following formulas:
b

zw) _ IU012 -’z~
!

2P:, UO= /Zds (17a)

Z\PI) . fi , IZL =
+

3, ds (17b)

(17C)

(17d)

x

t

-Y

Fig. 8. Electric field distribution of a 43 pm microstrip line (metallization
thickness = 3 pm) on 100 pm GaAs substrate (c. = 12.9).

Fig. 9. Normalized power flux density on a microstrip in direction of prop-
agation—same dimensions as in Fig. 9.

The line integral (17a) for the power voltage (Pi7) def-

inition has to be performed from the inner conductor to

the outer concluctor, whereas the integration path of the

loop integral ( 17b) (power current definition (PI)) has to

enclose the microstiip line. The voltage current definition

is either given by a direct calculation or by application of

(17c). To apply definition (17d) the fields and propagation

constants must be computed the same structure, but with

all dielectrics replaced by air. This leads to the character-

istic impedance in air ZLO. In this case all three give

the same result for ZLO. For non-TEM modes the result

depends on the integration path. Fig. 10 shows the cal-

culated results for a microstrip transmission line versus

frequency for the different definitions. For higher fre-

quencies the values diverge due to the increasing concen-

tration of the field under the microstrip, that means, the

propagating mode loses its TEM behavior more and more.

The results halve been compared to a calculation using the
spectral domain technique [2]. At low frequencies the val-

ues deviate by 5%. This correlates to a difference of 2.4%

in the calculated voltage and current (17a), ( 17b). Our

structure has a finite conductor thickness of 3 pm where

the approach of [2] assumes a zero thickness. The same
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100

[.. ./

qu)

ZLIQ Jansen[2]
90

/ / X
L

80 - +

70
~“

~:.eff)

60

/
50 ~

o 10 20 30 40 50 60 70 80

f I GHz

Fig. 10. Characteristic impedance ZLofamicrostrip(w = 30pm, t = 3
ym, substrate:h = 200~m, c, = 12.9) forvarious definitons.

(a) (b)

Fig. 11. Arrow field plot of a high lossy rectangular coaxial waveguide
(inner conductor: 2a X 2a, width ofouter conductor: 3.2a, x = 0.4S .
m/mm2). (a)ako = 0.01. (b)alro = 0.3.

structure computed with conductor losses leads to a slight

diminution of the real part of the impedances and to a

negative imaginary part with an exponential decrease in

magnitude versus frequency.

Conductor losses are included in the calculation by giv-

ing the conductors a finite value of K. This may be dem-

onstrated using a rectangular coaxial waveguide, with the

inner conductor having a conductivity K = 0.4 S “
m/mm2. At lower frequencies the H-field penetrates the

lossy conductor, but at higher frequencies the conductor

is free of field and the field concentrates in the surround-

ing region (Fig. 11).

A 43 pm microstrip line on GaAs substrate with a 50

pm gap is used to demonstrate the field distribution around

the gap at about 50 GHz. The S-parameters demonstrate

the behavior of the gap like a concentrated capacitor. A

time dependent plot of the electric field is given in Fig.

12 in the intervals of 1/12 of the time period T = 1/~.
The conditions for the electric field at the input and output

ports have been chosen ideally matching. This has been

achieved by a complex three-dimensional calculation with

use of the previously computed scattering parameters.

Thus a continuous wave propagation is ensured. A stand-

ing wave behavior in the region between the input port

and the gap can be observed due to the reflections at the

gap. The concentration of the field in the gap region can

be studied.

A planar resistor of 50 Q in series to a transmission line

has been realized by a volume of resistive material. The

t=o

t= Tl12

t =zT/12

t =3T/12

t = 4T/t 2

t = 5.T/12

t = T/2

Fig. 12. Time dependence of the electric field beneath a microstrip line
(c&tductor: widthA43 pm, thickness 20 ~m, substrate: height 100 ~m, E,
= 12.9) with a 50 pm gap.

-11 K=l.104(Qnl-~——
1 K.5. 103 (fires’

-2 1

o 10 20 30 40 50 60 70 80 90 100

f I GHz

Fig. 13. Magnitude ,S12of a planar series resistor at different conductivities
~ (length 40 #m, width 43 pm, thickness 3 ~m) in microstrip of same cross-
section. Substrate: h = 150 ~m, e. = 12.9.

magnitude of S12 (Fig. 13) shows a lumped element be-

havior over the whole frequency range. The structure can

be represented by a series resistor, parallel to a capacitor.

S,z increases with increasing frequency due to the capac-
itive coupling. The data in Fig. 13 are plotted after a shift

of the reference plane to the ends of the resistor. The re-

sulting values are in close agreement to a calculation of

the dc values of the volume resistor (deviation <1 % at

10 GHz).

An inductive post in a rectangular waveguide shows the

validity of the method even for inhotnogeneous three-

dimensional structures. The wave incident upon the post

is the dominant TEIO waveguide mode. The calculated

scattering parameters are shown in Fig. 14 together with

the results from Leviatan and Sheaffer [25]. Their solu-
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e

Fig. 14. Reflection coefficient magnitude S,l versus +for a centered di-
electric post in a rectangular waveguide (b/a = 01.5, d/a = 0,1, a =
X/ 1.4). The markers give the results from [25].

tion @ based on a moment method, which uses filamen-

tary currents to simulate the scattered field and the field

inside the post. The agreement is very gc~od even for high

dielectric values of the post. The small shift of the reso-

nance frequency is due to the slightly different post di-

ameter resulting from the discretization.

VI. CONCLUSION

The presented method performs exeellent results in

S-parameter computation of discontinuity problems in

planar transmission lines and even arbitrary three-dimen-

sional structures. The finite-different method was formu-

lated for analysis of three-dimensional lossy structures.

The bounda~ conditions were chosen with precomputed

electrical fields at the input and output port of the struc-

ture. Different excitations allow the evaluation of

S-parameters of different modes, inclu{iing coupling be-

tween higher order modes. The method was discussed in

detail including the computation of the excited modal

fields.

Numerical examples were given for various lossy and

non Iossy structures. Plots of the computed three-dimen-

sional electric and magnetic fields provide information

on the behavior of the discontinuity. This will be of great

use in the case of resonant or coupling structures, e.g.,

dielectric resonators coupled to a microstrip lilme. The use

of a frequency-domain method allows the compution of

scattering parameters with any necessary frequency res-

olution. Higher order modes excited by a discontinuity

can be computed and the generalized S-parameters are

used to describe the mode coupling. The achieved results

are valid over a wide frequency range. The use of a su-

percomputer allows to treat large structures up to 55000

elementary cells. The computing time depends on the

structure and is up to a few minutes for each frequency

point. The flexibility of this approach opens a wide vari-

ety of applications, i.e., monolithic microwave integrated

circuits, waveguide transitions, electrclmagnetic compati-

bility, fields in biological media or similar structures.
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